trans-ISOMERS OF TETRACARBONYL HALIDES OF IRON, RUTHENIUM AND OSMIUM

M. PAŃKOWSKI AND M. BIGORGNE*

Laboratoire de Chimie Minérale, Ecole Nationale Supérieure de Chimie, Paris (France)
(Received July 17th, 1969)

SUMMARY
Preparation of the compounds trans- $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{I}_{2}$ and trans- $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$ is described and vibrational assignment based on their infrared spectra are discussed from a structural viewpoint. trans- $\mathrm{Ru}(\mathrm{CO})_{4} \mathrm{I}_{2}$ could not be isolated in a pure state. All these compounds exist in the cis and trans forms in the solid state as well as in solution. Dependence of the equilibrium upon radiation and temperature is also discussed.

INTRODUCTION

Cis-trans isomerism of $\mathrm{M}(\mathrm{CO})_{4} \mathrm{X}_{2}(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os} ; \mathrm{X}=\mathrm{I}, \mathrm{Br}, \mathrm{Cl})$ offers an interesting subject for investigation in spectroscopy. These compounds are monomers of octahedral configuration and are known in literature as having the cis form ${ }^{1-3}$: the two metal-halogen bonds form an angle of 90°. This configuration corresponding to the point group $C_{2 v}$ should show four $\mathrm{C}-\mathrm{O}$ infrared active bands $\left(2 A_{1}+B_{1}+B_{2}\right)$, four M-C bands $\left(2 A_{1}+B_{1}+B_{2}\right)$, two $\mathrm{M}-\mathrm{X}\left(A_{1}+B_{1}\right)$ and six $\mathrm{M}-\mathrm{C}-\mathrm{O}$ bands $\left(2 A_{1}+\right.$ $2 B_{1}+2 B_{2}$).

On the contrary, for the trans isomers of these compounds, one should expect, in the case of the highest molecular symmetry $D_{4 h}$: one $\mathrm{C}-\mathrm{O}$ band E_{u}, one M-C band E_{u}, one M-X band $A_{2 u}$ and two M-C-O bands $A_{2 u}+E_{u}$.

IR analysis should therefore enable to distinguish between these two isomers without ambiguity.

RESULTS AND DISCUSSION

Synthesis of trans-M(CO) $4_{4} I_{2}$ complexes

Detection of the trans form has been realized for the first time by Noack ${ }^{1}$ for $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{I}_{2}$: when a solution of cis- $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{I}_{2}$ in hexane was exposed to the spectrograph beam, a new band appeared at $2081.0 \mathrm{~cm}^{-1}$, which was supposed to belong to the trans complex. This phenomenon was observed also by Johnson et al. ${ }^{4}$ who studied combination bands in the region $4300-4100 \mathrm{~cm}^{-1}$ of a cis/trans mixture.

[^0]Using Ncack's method we succeeded in isolating ${ }^{5}$ trans- $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{I}_{2}$ in the pure state. A solution of the cis form in hexane exposed to sunlight was converted in a 30% yield into the trans form, with other decomposition byproducts.

The mixture was separated by fractional crystallisation at -80°, the trans form being less soluble than the cis. The cis/trans solid mixture may be also fractionated by sublimation at room temperature under a current of nitrogen gas, the trans form being more volatile than the cis one. The trans form can also be obtained, besides the action of light, by heating the cis form in an autoclave for 48 h under a CO pressure of 300 atm at 135°, but the conversion ratio is very weak.
$\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$ was synthesised for the first time by Hieber and Stallmann ${ }^{10}$ by the action of CO on "Osmiumoxyiodide" under a CO pressure of 200 atm at various temperatures. These authors observed the formation of two types of crystals according to the reaction temperature. Hales and Irving ${ }^{3}$ obtained cis- $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$ by employing the same method (temperature not indicated).

Atiempts to modify Hieber's method led us to heat only the lower part of the autoclave containing "Osmiumoxyiodide" up to 60° during 24 h under a CO pressure of 300 atm . On the upper (colder) part of the autoclave yellowish crystals were formed : these were found to have the formula $\mathrm{OsC}_{4} \mathrm{O}_{4} \mathrm{I}_{2}$ and their trans structure was confirmed by IR analysis (Fig. 2). (Found: C, 8.78. $\mathrm{C}_{4} \mathrm{I}_{2} \mathrm{O}_{4} \mathrm{Os}$ calcd.: C, 8.65%.)

Trans complexes could not be obtained by the action of sunlight on hexane solutions of cis- $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$. Solutions of $\operatorname{cis}-\mathrm{Ru}(\mathrm{CO})_{4} \mathrm{I}_{2}$ in hexane when exposed to sunlight, give reaction products whose IR spectra show a number of new bands out of which the one at $2089.5 \mathrm{~cm}^{-1}$ may be assignable to the expected E band of the trans form ${ }^{7-9}$. This band is close to the B_{2} axial band at $2106.0 \mathrm{~cm}^{-1}$, the strongest band in the spectrum of the cis form; the same phenomenon is observed with iron complex isomers. This assignment may be confirmed by studying the modifications of the cis- $\mathrm{Ru}(\mathrm{CO})_{4} \mathrm{I}_{2}$ spectrum when this compound is heated during 48 h at 170° under a CO pressure of 300 atm .

Several experiments showed that only one new band appears in the spectrum at $2089.5 \mathrm{~cm}^{-1}$, variable in intensity from one experiment to another and from one sample to another of the same preparation.

cis-trans Equilibrium

Contrary to reports by Johnson et al. ${ }^{4}$ our observations show that the cis-trans rearrangement results from the equilibrium :

$$
\text { cis- } \mathrm{Fe}(\mathrm{CO})_{4} \mathrm{I}_{2} \underset{\text { dark }}{\stackrel{h v}{\rightleftarrows}} \text { trans }-\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{I}_{2}
$$

in the following manner:
(a). Exposure to light of the cis form results in a partial transformation to the trans form with simultaneous decomposition.
(b). By keeping a solution of the trans form in darkness at room temperature, formation of the cis form follows.

These observations confirm the existence of an equilibrium which is displaced in favor of the cis form, in the absence of light and at room temperature.
cis- $\mathrm{Ru}(\mathrm{CO})_{4} \mathrm{I}_{2}$ behaves in the same manner under the action of sunlight as cis- $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{I}_{2}$; however the reaction gives in addition to the trans form some other
carbonyl complexes. As for the cis- $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$ complex, it decomposes when exposed to sunlight without giving the trans form, while trans- $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$ is converted into the cis form under the same conditions.

Solid cis- $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{I}_{2}$ when heated to 135° under 300 atm of CO partially transforms to the trans form. cis- $\mathrm{Ru}(\mathrm{CO})_{4} \mathrm{I}_{2}$ seems to have a similar behaviour at 170° and the same conditions of pressure.

In the case of the trans- $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$ the behaviour seems to be inverted: the transformation of the cis form was nearly total at 200° and 300 atm of CO (the trans form was obtained at 60°).

Our investigations indicate that the reaction equilibrium under the conditions which we have described (CO pressure) is displaced in favor of the cis form for iron and ruthenium complexes and in favor of the trans form in the case of the osmium complexes, at room temperature.

Spectroscopic study

In a separate paper ${ }^{6}$ it is shown that the appearance of the $B_{1 g}$ band in the spectra of trans $-\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{I}_{2}$ and in trans- $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$ is due to lowering of the molecular symmetry.

Fig. 1. Configuration of trans-M(CO) $)_{\perp} \mathrm{I}_{2}$ complexes ($D_{2 \mathrm{~d}}$).
The molecular symmetry is actually $D_{2 d}$ and not $D_{4 h}$.
The number and species of the expected bands of both $D_{4 h}$ and $D_{2 d}$ point group symmetry are summarised in Table 1.

TABLE 1
number and species of expected $\mathrm{C}-\mathrm{O}, \mathrm{M}-\mathrm{C}, \mathrm{M}-\mathrm{C}-\mathrm{O}$ and $\mathrm{M}-\mathrm{X}$ bands for trans- $\mathrm{M}(\mathrm{CO})_{4} \mathrm{I}_{2}$ Complexes

$\mathrm{C}-\mathrm{O}$ stretching $\mathrm{M}-\mathrm{C}$ stretching		$\mathrm{M}-\mathrm{C}-\mathrm{O}$ bending		$\mathrm{M}-\mathrm{X}$ stretching	
$D_{4 h}$	$D_{2 d}$	$D_{4 h}$	$D_{2 d}$	$D_{4 h}$	$D_{2 d}$
$\begin{aligned} & A_{1 g} \\ & B_{1 g} \\ & E_{u}{ }^{a} \end{aligned}$	$\begin{aligned} & A_{1} \\ & B_{2}{ }^{a} \\ & E^{a} \end{aligned}$	$\begin{aligned} & A_{2 g} \\ & B_{2 g} \\ & E_{g} \\ & A_{2 u}{ }^{a} \\ & B_{2 u} \\ & E_{u}{ }^{a} \end{aligned}$	$\begin{aligned} & A_{2} \\ & B_{1} \\ & E^{a} \\ & B_{2}^{a} \\ & A_{1} \\ & E^{a} \end{aligned}$	$\begin{aligned} & A_{1 g} \\ & A_{2 u}{ }^{a} \end{aligned}$	$\begin{aligned} & A_{1} \\ & B_{2}{ }^{a} \end{aligned}$

[^1]The modifications concern three bands: two bands of B_{2} symmetry ($\mathrm{C}-\mathrm{O}$ and $\mathrm{M}-\mathrm{C}$) and one of E symmetry $\mathrm{M}-\mathrm{C}-\mathrm{O}$ for $D_{2 d}$. One expects that these bands should be of very weak intensity owing to the fact that the $D_{2 d}$ configuration of the molecule results from a distortion of $D_{4 h}$ symmetry.
$C O$ bands of B_{2} species were observed without any ambiguity in the pure trans- $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{I}_{2}$ and trans- $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$ in solution. They are more intense in iron than in osmium complexes. A possible repulsion of the CO's between them has been suggested ${ }^{6}$ as the cause of the lowering of the symmetry from $D_{4 n}$ to $D_{2 d}$. The weaker intensity of the B_{2} band in the osmium complex would follow from the bigger size of this atom: the distance between the CO's is larger, and their repulsion smaller.

We did not succeed in isolating trans- $\mathrm{Ru}(\mathrm{CO})_{4} \mathrm{I}_{2}$ without contamination with cis isomer, in order to locate the corresponding B_{2} band.
$E(\mathrm{M}-\mathrm{C}-\mathrm{O})$ bands corresponding to E_{a} species of $D_{4 h}$ were not detected even in the case of iron and osmium complexes. It is possible that they have the same frequencies as the E bands c rresponding to E_{u} spccies of $D_{4 h}$ symmetry. Finally the B_{2} axial (M-C) bands of trans iron and osmium complexes were not distinguished with full certainty.

Fig. 2. IR spectra of trans- $\mathrm{M}(\mathrm{CO})_{4} \mathrm{I}_{2}(\mathrm{M}=\mathrm{Fe}, \mathrm{Os})$ and cis/trans $\mathrm{Ru}(\mathrm{CO})_{4} \mathrm{I}_{2}$ mixture in the $\mathrm{C}-\mathrm{O}$ and $\mathrm{M}-\mathrm{C}$ stretching region and in the $\mathrm{M}-\mathrm{C}-\mathrm{O}$ bending region in hexane solutions (dotted curve of trans- $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$ in $\mathrm{Os}-\mathrm{C}$ region in CsI pellet).
J. Organometal. Chem., 19 (1969) 393-398

Fig. 2 represents the spectra of the pure trans- $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{I}_{2}$ and trans- $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$ and a cis/trans $\mathrm{Ru}(\mathrm{CO})_{4} \mathrm{I}_{2}$ mixture.

The assignments are evident for $E(\mathrm{C}-\mathrm{O})$ and $(\mathrm{M}-\mathrm{C})$ bands. The $\mathrm{B}_{2}(\mathrm{C}-\mathrm{O})$ band was previously ${ }^{5}$ designated $B_{1 g}$. Weak bands situated at the lower frequency side of $E(\mathrm{C}-\mathrm{O})$ bands are undoubtedly related to trans-M($\left.{ }^{13} \mathrm{CO}\right)\left({ }^{12} \mathrm{CO}\right)_{3} \mathrm{I}_{2}$ species vibrations.

In the region of $\mathrm{M}-\mathrm{C}-\mathrm{O}$ bending, the band of higher frequency is assigned to the B_{2} vibration by comparison with homologous trans- $\mathrm{Fe}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}$. If this is so, the second band would then be of the E species.

The frequencies of the $\mathrm{M}-\mathrm{C}-\mathrm{O}$ and $\mathrm{M}-\mathrm{C}$ vibrations of cis-ruthenium and cis-osmium complexes are given in Table 2 for the first time.

TABLE 2
ABSORPTION BANDS ${ }^{\circ}$ and assignments of $\mathrm{C}-\mathrm{O}, \mathrm{M}-\mathrm{C}-\mathrm{O}$ and $\mathrm{M}-\mathrm{C}$ VIbRATIONS OF cis and mans-M(CO) I_{2} complexes ($\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os}$)

$\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{I}_{2}$		$\mathrm{Ru}(\mathrm{CO})_{4} \mathrm{I}_{2}$		$\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$	
cis	trans	cis	trans	cis	trans
$C_{2 r}$	$D_{2 d}$	$C_{2 r}$	($D_{2 d}$)	C_{2}.	$D_{2 d}$
$\mathrm{C}-\mathrm{O}$					
$2131.0 \mathrm{~s} A_{1 \mathrm{ax}}$	2102.0 vw B_{2}	$2159.5 \mathrm{~m} A_{\text {1ax }}$		$2163 \mathrm{~m} A_{\text {1ax }}$	2108 vw B_{2}
$2086.7 \text { vs } B_{2 \mathrm{ax}}$	2081 vs E	2106.0 s $B_{2 \mathrm{ax}}$	2089.5 vs E	2099.5 s $\mathrm{B}_{23 x}$	2073.0 vs \bar{E}
2084.9 (sh) $A_{1 \mathrm{cq}}$		2095.0 s $A_{1 \text { cq }}$		$2084.5 \mathrm{~s} A_{1 \mathrm{cc}}$	
$2062.0 \mathrm{~s} B_{1 \mathrm{cq}}$	2047 vw $A_{1}\left({ }^{13} \mathrm{CO}\right)$	2067.0 s $B_{1 \mathrm{eq}}$		2049.5 s $B_{\text {leq }}$	2040 vw $A_{1}\left({ }^{13} \mathrm{CO}\right)$
$\mathrm{M}-\mathrm{C}-\mathrm{O}$					
600 vs	606 vs B_{2}	559 vs ${ }^{\text {b }}$		573 vs ${ }^{\text {b }}$	606.5 vs B_{2}
594 vs	600 vs E	$549 \mathrm{vs}^{\text {b }}$		563 vs ${ }^{\text {b }}$	$585 \mathrm{~s} E$
573 vs		$538 \mathrm{vs}^{\text {b }}$		$552 \mathrm{vs}^{\text {b }}$	
				$535(\mathrm{sh})^{b}$	
507 w				$531(\mathrm{sh})^{\text {b }}$	
M-C					
454 m		458 mb		463 m ${ }^{\text {b }}$.
421 w		$432 \mathrm{w}^{\text {b }}$		$439 \mathrm{w}^{\text {b }}$	
395 vw		$385 \mathrm{~m}^{\text {b }}$		$403.5 \mathrm{~m}^{\text {b }}$	$380^{b}(\mathrm{sh}) B_{2}$
385 m		339 s $B_{2 a x}{ }^{\text {b }}$		350 s $\mathrm{B}_{23 \mathrm{x}}{ }^{\text {b }}$	$347 \mathrm{~s} E$

[^2]In view of their high intensities the bands at $339 \mathrm{~cm}^{-1}$ of cis- $\mathrm{Ru}(\mathrm{CO})_{4} \mathrm{I}_{2}$ and $350 \mathrm{~cm}^{-1}$ of cis- $\mathrm{Os}(\mathrm{CO})_{4} \mathrm{I}_{2}$ are assigned to B_{2} axial species vibrations (two M-C bonds trans to each other).

In conclusion it can generally be stated that the ruthenium complexes are not situated between those of iron and osmium, as far as their frequencies are concerned. This behaviour is closely related to that of the homologous series of chromium, molybdenum and tungsten hexacarbonyls.

REFERENCES

1 K. Noack, Helv. Chim. Acta, 45 (1962) 1847.
2 E. R. Corey, M. V. Evans and L. F. Dahl, J. Inorg. Nucl. Chem., 24 (1962) 926.
3 L. A. W. Hales and R. J. Irving, J. Chem. Soc., A, (1967) 1389.
4 B. F. G. Johnson, L. Lewis, P. W. Robinson and R. Miller, J. Chem. Soc., A, (190́8) 1043.
5 M. Pańkowski and M. Bigorgne, C. R. Acad. Sci., Paris, 263 (1966) 239.
6 M. Bigorgne, R. Poilblanc and M. Pańkowski, Spectrochim. Acta, in press.
7 F. Calderazzo, Halogen Chemistry, Vol. 3, Academic Press, New York, 1967, p. 411.
8 F. Calderazzo and F. L. Eplattenier, Inorg. Chem., 6 (1967) 1220.
9 B. F. G. Johnson, R. D. Johnston and J. Lewis, J. Chem. Soc., A, (1969) 792.
10 W. Hieber and H. Stallmann. Chem. Ber., 75 (1942) 1472.
J. Organomctal. Chem., 19 (1969) 393-398

[^0]: * Author to whom correspondence should be addressed.

[^1]: ${ }^{a}$ IR-active.

[^2]: ${ }^{a}$ All spectra (solutions in hexane unless stated otherwise) recorded using a Perkin-Elmer 225 spectrophotometer; vw, very weak; w, weak; m, medium; s, strong; vs, very strong; (sh), shoulder. ${ }^{\text {b }}$ In CsI pellet.

